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In this paper the effects of energetic disorder on the current density and recombination profile of single-layer
organic light-emitting diodes �OLEDs� with Gaussian shapes of the electron and hole densities of states are
studied. Gaussian disorder is found to give rise to a strong enhancement of the double carrier current density
as compared to the sum of the single-carrier current densities and, in symmetric OLEDs, to a strong confine-
ment of the recombination profile to the center of the device. The study is made using a OLED device model
which makes use of a one-dimensional master-equation method within which hopping takes place in between
discrete sites at physically meaningful intersite distances and within which the intersite hopping rates are
consistent with the carrier density dependence of the mobility as obtained by Pasveer et al. �Phys. Rev. Lett.
94, 206601 �2005��. The model is shown to provide physically transparent descriptions of the dependence of
the mobility and the recombination rate on the electric field, based on results from three-dimensional modeling.
An outlook is given on applications to multilayer OLEDs.
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I. INTRODUCTION

The functioning of organic light-emitting diodes �OLEDs�
as energy efficient and stable light sources1–3 depends
strongly on the shape of the recombination profile, i.e., on
the dependence of the recombination rate on the position
within the active semiconducting single-layer or multilayer
material. For example, the shape of the recombination profile
determines the wavelength-dependent light outcoupling effi-
ciency, as a result of microcavity effects such as waveguid-
ing and exciton quenching at the metallic electrodes.4 In this
paper, we focus on OLEDs based on a single organic light-
emitting layer. As predicted by Parmenter and Ruppel,5 the
recombination profile is fully uniform across the emitting
layer when �i� the electron and hole mobilities and diffusion
coefficients are equal and constant, �ii� injection at the con-
tacts is ideal, �iii� the bimolecular recombination rate is de-
scribed by the Langevin equation,6 and �iv� the diffusion
contribution to the current density is neglected. Neumann et
al.7 showed that when the diffusion contribution is taken into
account the recombination profile is not anymore fully uni-
form, but shows a significant decrease in interfacial zones
near the electrodes, and vanishes at the electrodes. When, in
addition, the electron and hole mobilities are not constant but
show a field dependence as described by a Poole-Frenkel
factor, the recombination rate shows a local minimum at the
device center and two maxima more close to the electrodes.8

In the OLED models discussed above the effects of ener-
getic disorder of the localized states in between which the
hopping takes place have been neglected. For the case of a
Gaussian shape of the density of states �DOS�, it has recently
been shown that the mobility is not only dependent on the
temperature and the electric field9 but also on the charge-
carrier density. This effect depends on the ratio of the width
of the Gaussian DOS, �, and the thermal energy, kBT, with
kB the Boltzmann constant and T the temperature.10–12 We
will refer to the parametrization of the temperature, field, and

density-dependent mobility as given by Pasveer et al.,11

based on the results of a master-equation �ME� study, as the
“extended Gaussian disorder model” �EGDM�. Successful
quantitative descriptions of hole transport in para-
phenylene-vinylene and polyfluorene-based sandwich-type
devices, assuming a Gaussian DOS, were given by Pasveer
et al.11 and Van Mensfoort et al.,13 respectively.

In this paper, we investigate the effects of Gaussian dis-
order on the current density and recombination profile in
single-layer OLEDs. In principle, it would be possible to
investigate these effects by introducing the EGDM in one of
the one-dimensional �1D� OLED device models which are
already available.14–25 However, it is presently not clear to
what extent the true 3D character of the filamentary
transport26 and recombination processes can be described us-
ing a 1D model. More specifically, it is presently not yet
clear to what extent bimolecular recombination in materials
with Gaussian disorder is properly treated using the Lange-
vin formula. Albrecht and Bässler27 studied the recombina-
tion rate in the independent particle �Boltzmann� limit using
three-dimensional �3D� Monte Carlo �MC� calculations, and
found �i� at small fields no significant deviation from the
Langevin rate when varying the disorder parameter � and �ii�
a significant enhancement of the recombination rate with re-
spect to the Langevin rate with increasing field. In contrast,
Groves and Greenham28 recently found from a MC study
that in homogeneous systems �a box with periodic boundary
conditions� with isotropic mobilities the bimolecular recom-
bination rate can be larger than given by the Langevin for-
mula when ��kBT. So far, no systematic study of the
charge-carrier density dependence of the recombination rate
has been performed.

It may be envisaged that true future benchmark OLED
device models will be based on MC simulations of the trans-
port and recombination as resulting from 3D hopping pro-
cesses in between discrete sites, with proper injection bound-
ary conditions at the electrode planes. Thereby, any possible
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arbitrariness concerning the injection of new particles is
avoided. Such calculations are inevitably computationally
rather expensive, so that 1D continuum models will remain
of interest as a practical tool for analyzing the measured
properties of OLEDs and for exploring the potential of novel
OLED device structures. It will thus be of importance to
“translate” the results of 3D modeling to effective 1D mod-
els.

In order to facilitate such a 3D-1D translation step, we
develop in the first part of this paper �Sec. II� a OLED device
model which may be viewed as intermediate in between 3D
�discrete� and 1D �continuum� models. Within the model, the
discreteness of the sites, positioned at physically meaningful
intersite distances, is retained, but the transport is treated as
one-dimensional. A ME method is used for solving the drift-
diffusion-recombination problem. The method is constructed
such that the intersite hopping rates at zero field are consis-
tent with the carrier density dependence of the mobility, as
obtained within the EGDM. We show how the model pre-
dicts in a natural way why the field dependence of the re-
combination rate is expected to be larger than as given by the
Langevin formula and how thermal electron-hole pair gen-
eration should be modeled. It is also shown that the model
provides a physically transparent and quantitatively accurate
description of the field dependence of the mobility. Previ-
ously, the field dependence of the mobility as obtained within
the EGDM was only described in a phenomenological way.

In the second part of the paper �Sec. III�, the model is
applied to single-layer OLEDs with equal electron and hole
mobilities �“symmetric OLEDs”� and with unequal mobili-
ties �“asymmetric OLEDs”�. It is found that �i� the current
density is unexpectedly large as compared to that in other-
wise identical single-carrier devices and �ii� in symmetric
OLEDs the recombination profile becomes with increasing
disorder more confined to the device center, as a result of the
carrier density dependence of the mobility. Section IV gives
a summary and an outlook on extensions of the model, in-
cluding applications to transport across organic-organic in-
terfaces in multilayer OLEDs.

II. OLED DEVICE MODEL

Within the OLED device model developed in this section,
transport is described as resulting from nearest-neighbor
hopping along linear chains of discrete electron and hole
sites, shown in Fig. 1�a�, with site indices i=0 �anode� to N
�cathode�. The distance between the sites is equal to �a, with
a the average intersite distance in the organic semiconductor
and � a number of order unity. The average carrier concen-
tration at each site is determined self-consistently using a
1D-ME approach within which it is required that for elec-
trons and holes the total rate of hops toward each site is equal
to the sum of the total rate of hops away from that site and
the recombination rate at that site. The hop rates are derived
from a two-level model, and are chosen such that at zero
electric field the resulting carrier-concentration-dependent
mobility is fully consistent with the EGDM. We find that the
lattice parameter �a can be taken such that the electric field
dependence of the mobility is in good agreement with the

EGDM. The model includes the correct carrier density and
electric field dependence of the diffusion coefficient in an
implicit manner, and is fully consistent with the principle of
detailed balance.

A. Single-carrier transport

In the case of single-carrier transport the net current den-
sity from site i−1 to i across interval i, is assumed to be
given by

Ji = �ci−1ri
+ − ciri

−�
e

a2 , �1�

with ci the carrier concentration �occupation probability� on
site i, ri

+�−� the forward �backward� hopping rates across in-
terval i, and e the elementary charge. We consider a Gaussian
DOS with width � and define a dimensionless disorder pa-
rameter �̂�� / �kBT�. In order to obtain an expression for the
hopping rates, we make a transformation of the numerically
exact 3D master-equation results obtained in Ref. 11 to the
1D system defined above. Use is made of the “transport
level” concept.9,29 At zero electric field, the forward and
backward hopping rates are determined by a local thermal
activation energy, EA�n��Etr−E0�n�, which is equal to the
energy difference between �i� an effective transport level, Etr,
which is in most cases of interest situated close to the center
of the DOS and �ii� a characteristic starting energy, E0, which
depends on the local carrier density, n, and which is usually
situated in the tail of the DOS. In Ref. 30, it was already
shown that the carrier density dependence of the mobility
can be understood well from the transport level concept. Be-
low, we show that the concept also provides a good descrip-
tion of the electric field dependence of the mobility.

For very small carrier densities, in the Boltzmann regime,
the carriers act like independent particles. The mobility in
this regime, �0, is independent of the carrier density.
For carrier densities above a critical value, ncr
= �1 /2�a−3 exp�−�̂2 /2�,30 E0 increases with increasing den-
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FIG. 1. �Color online� �a� The linear chain of discrete sites,
assumed within the 1D-ME model; �b� Schematic view of the hop-
ping process between sites at energy levels E0. The figure shows the
special case in which the electrostatic field is uniform �linear varia-
tion in the transport energy, Etr, with position� and in which the
carrier density is uniform �so that the activation energy, Etr−E0, is
uniform�.
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sity, so that the activation energy decreases. This results in a
density- and disorder-dependent enhancement, g�n , �̂�, of the
hopping rates, and hence of the mobility, with respect to the
values in the Boltzmann limit. At zero field and at small
carrier densities, Etr is to excellent approximation indepen-
dent of the carrier density, leading to a simple analytical
expression for g�n , �̂� �Eq. �28� in Ref. 30�. However, for
relatively large carrier densities, this approach would overes-
timate the actual mobility. First, the increase in Etr with in-
creasing density is then not quite negligible and second, the
finite probability that the final state is already occupied re-
duces the mobility. In this paper, both effects are to a good
approximation taken into account by describing g�n , �̂� as
given in Appendix A.

The presence of an electrostatic field, F, decreases and
increases the effective thermal activation barrier for down-
stream and upstream hops, respectively. We position the ef-
fective barrier halfway between each pair of sites �see Fig.
1�b��, and use the following expression for the hopping rates
across interval i:

ri
+ = g�ni−1,�̂i−1�exp�+

e�aFi

2kBT
� � r0,i−1 �2�

and

ri
− = g�ni,�̂i�exp�−

e�aFi

2kBT
� � r0,i, �3�

with ni=ci / ��a3� the carrier density and with �from Eqs.
�1�–�3��

r0,i =
�0,ikBT

�2a2e
�4�

the hopping rate in the zero density and zero-field limit. The
latter quantity is site dependent in the case of transport in a
layered structure.

By considering the current density in a system with a
uniform carrier density �no diffusion�, it follows straightfor-
wardly from Eqs. �1�–�4� that the mobility may be expressed
as a product of a density-dependent and field-dependent

factor: ��n ,T ,F�=g�n , �̂�� f�F���0. Defining F̂��aeF /
�2kBT�, it follows that the field dependence is given by

f�F� =
sinh F̂

F̂
, �5�

with f�0�=1. The model thus provides an explanation for the
empirical finding obtained from the 3D-ME calculations in
Ref. 11 that the mobility in a Gaussian DOS may be factor-
ized. Making use of the density and temperature dependence
of the mobility obtained in Ref. 11 �EGDM�, the full expres-
sion for the mobility as obtained in the 1D-ME model is
given by

�1D�n,F,�̂� = g�n,�̂�f�F�exp�− C2�̂2� � ��, �6�

with ���C1a2�0e /�, where �0 is the hopping attempt fre-
quency and where C1=1.8�10−9 and C2=0.42 are fit param-
eters. C1 is very close to the overlap between the localized
wave functions in between which the hopping takes place,

exp�−2�a�, where � is the inverse of the wave-function ex-
tension. In Ref. 11, �−1 is taken to be equal to a tenth of the
intersite distance, so that exp�−2�a�=exp�−20�=2.06
�10−9. In the remainder of this paper we will neglect the
small difference.

In the Boltzmann regime, the correct value of the diffu-
sion coefficient, D0= �kBT /e��0 �Einstein equation� is ob-
tained. Outside the Boltzmann regime, the approach is con-
sistent with the generalized Einstein equation,31 provided
that the model is understood to describe transport in an ef-
fective DOS with a shape that is almost but not precisely
Gaussian. This is shown and further discussed in Appendix
A, using the principle of detailed balance.

The parameter � is chosen such that the function f�F�
most optimally describes the field dependence of the mobil-
ity as obtained from 3D-ME calculations. In Fig. 2 a com-
parison is given between the field-dependent mobility as ob-
tained using the 3D-ME method �symbols, data taken from
Ref. 32� and the mobility as obtained using the 1D-ME
model using �=1 �dashed curves� and using an optimized
value of � �full curves�. The comparison is made for various
values of �̂ and for relatively small and relatively large car-
rier densities �Figs 2�a� and 2�b�, respectively�. For �=1 and
for small �̂, fair agreement is observed between the dashed
curves and the 3D-ME results. However, for values �̂ around
and above 4 the field dependence is underestimated. Using

FIG. 2. �Color online� Electric field dependence of the mobility,
in units ��, at various values of the disorder parameter � /kBT, as
obtained in Ref. 32 from 3D-ME calculations �symbols�, and as
obtained from the 1D-ME method introduced in this paper using a
disorder-dependent intersite distance �a �full curves� and using the
actual intersite distance a �dashed curves�. Figures �a� and �b� give
the results for carrier concentrations c=3�10−5 and 5�10−2, re-
spectively. The inset in figure �b� shows the � /kBT dependence of
the ratio �. The mobility enhancement functions g�c , �̂� are taken
equal to the values obtained from the 3D results, so that the figures
show �by definition� exact agreement for F=0.
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optimized values of � �full curves� leads, for small fields, to
excellent agreement with the 3D-ME results. The values of �
vary from approximately 0.8 to approximately 1.4 for �̂
varying from 2 to 6, as shown in the inset in Fig. 2�b�. The
increase in � with increasing �̂ may be understood as a con-
sequence of an increase in the effective hopping distance
with increasing disorder, from nearest-neighbor hopping for
small �̂ to variable range hopping for large �̂, as is well
known from percolation theory �see, e.g., Figure 6 in Ref.
30�.

At high fields a different transport regime sets in. In the
actual 3D system this happens when the energy of most
downstream nearest-neighbor states is lower than the energy
of the initial state, so that the mobility-determining hops are
no longer thermally activated.11 Within our model, the cross-
over is defined to take place at the field for which the effec-
tive thermal activation energy for forward hops becomes
negative. The extension of the model to this regime is dis-
cussed in Appendix B. As shown in Fig. 2, the field at which
the transition to this regime takes place is well described by
the model, although for the highest of the two concentrations
considered, c=5�10−2, the actual transition is actually
somewhat less abrupt than as predicted.

The model can applied to the general case of injection
across a finite injection barrier, leading to a reduced carrier
density at the electrode planes. The following iterative pro-
cedure is then used for obtaining self-consistent values of the
carrier concentrations and electric fields at each site and in-
terval, respectively, from which the current density is calcu-
lated. First, a trial carrier concentration distribution across
the device is chosen. Second, the field distribution is calcu-
lated using the Poisson equation, assuming the presence of
N−1 laterally uniform charge-density sheets with infinitesi-
mal thicknesses, assuming that the electrodes are perfect
conductors, and taking the field due to the applied voltage,
V /L, into account. Third, a new c value is calculated at each
site i by requiring local dynamic equilibrium, i.e., by requir-
ing that Ji=Ji+1. Subsequently, the last two steps are repeated
until the current densities across all intervals are equal. Our
practical implementation of this approach is found to be
computationally efficient and stable.

In the case studies presented in Sec. III, we focus on
situations without injection barrier, i.e., alignment of the cen-
ter of the Gaussian DOS with the Fermi level in the elec-
trodes so that n0=nN=1 / �2a3�. This boundary condition pro-
vides at present the best possible model treatment of the case
with “ideal Ohmic contacts.” Although it is arguable whether
the EGDM would adequately describe the transport at such
high carrier concentrations, the conductivity in the contact
region is then very large, so that experiments do not sensi-
tively probe this. The zone within which the carrier concen-
tration is larger than 10% is very thin, and already very close
to the injecting contacts the carrier density is a few orders of
magnitude smaller. The effects of an injection barrier may be
included by using as a boundary condition the carrier densi-
ties that follows from the condition of thermal equilibrium
between the metallic electrode and the organic layer at the
interface, as has recently been validated by van der Holst et
al.33 using a 3D-ME study. The relationship between the in-
jection barrier and the carrier density is obtained in a manner
described in Appendix A.

In order to investigate the precision of the model, we have
made a comparison with the current-density versus voltage
�J�V�� curves for single-layer single-carrier devices with
varying �̂ using the continuum 1D drift-diffusion device
model presented recently in Ref. 34. For typical devices,
such as studied in Fig. 9 of Ref. 34, the agreement is found
to be very good. The continuum model presented in Ref. 34
is in practice preferred for single-carrier and single-layer
studies, in view of its higher computational efficiency. How-
ever, the 1D-ME model presented here is more versatile, as it
allows for taking double-carrier transport and complex layer
structures �see the outlook in Sec. IV� into account.

B. Double-carrier transport—recombination and generation

In the case of double-carrier transport, the method pro-
ceeds in basically the same way as described above, with two
adaptations. First, the space charge is calculated from the net
concentration of electron and hole charges. Second, the rela-
tionship between the hole and electron current densities in
consecutive intervals is now given by

Jh�e�,i = Jh�e�,i−1 � �ae�Ri − Gi� , �7�

with Ri and Gi the charge-carrier recombination and genera-
tion rates per volume unit at site i, respectively �in units
s−1 m−3�. In this subsection, we develop expressions for both
rates. For simplicity, we discuss here only situations in which
the disorder parameters and intersite distances for holes and
electrons are equal.

As discussed in the introduction, it is not well established
to what extent in systems with Gaussian disorder the Lange-
vin formula appropriately describes the recombination rate.
One of the issues is that it is not a priori clear whether the
field-dependent mobility functions should be used.35 Within
the derivation of the Langevin formula �see, e.g., Ref. 6�, the
presence of an external field is not taken into account. The
1D-ME model developed in this paper allows us to deal with
this problem in a quite natural way, viz., by assuming that the
recombination rate is proportional to the total rate at which
as a result of hops to the site considered a carrier meets at
that site another carrier of the opposite polarity. When only
hops in between sites on a cubic grid are considered, contri-
butions due to hops from three types of nearest-neighbor
sites may be distinguished: one upstream site, one down-
stream site, and four �equivalent� laterally positioned sites.
The hop rates from these sites to the central site are depen-

dent on the local field, and proportional to exp�F̂�, exp�−F̂�
and 1, respectively, for a reduced field F̂�e�aF / �2kBT�
	 F̂�. See Appendix B for the case F
F�. We consider the
total weight of hops from the lateral sites as a presently un-
known parameter, k, to be deduced from 3D Monte Carlo
calculations. The field dependence of R is then equal to

hk�F̂� =
1

2 + k
�exp�F̂� + exp�− F̂� + k� . �8�

The upper part of Fig. 3 shows, as an example, schematically
the recombination process assumed when taking k=0 �re-
combination only due to longitudinal hops� or k=4. The
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lower part of Fig. 3 gives for the cases k=0 and 4 the ratio
hk�F� / f�F� as a function of the electric field at 250 K and
300 K, with f�F� the field dependence of the mobility as
given by Eq. �5�. The figure shows that the actual field de-
pendence of the recombination rate is larger than the field
dependence that would be expected from the Langevin for-

mula, which would predict that R� f�F̂�. Due to the large
contribution from field-independent lateral hops, the field de-
pendence of hk / f is for k=4 much smaller than for k=0.

The prediction from the model given above that the field
dependence of the recombination rate is larger than as ex-
pected from the Langevin formula is consistent with the find-
ings from a MC study by Albrecht and Bässler.27 The authors
calculated the field dependence of the ratio of the recombi-
nation rate and the mobility for a system with Gaussian dis-
order with �=0.1 eV and a=0.8 nm, in the low density
�Boltzmann� regime. The results, obtained for 250 K and 350
K, are included in Fig. 3 as closed spheres. At 300 K, the
field dependence is close to that predicted when taking k
=2 �not shown�. However, no temperature dependence was
found from the MC calculations.

The finding that taking k=2 provides a good description
of the MC results at room temperature is consistent with a
more refined “isotropic” approach, within which hops from
nearest-neighbor sites which reside uniformly on a sphere are
considered. Taking the weight of each contribution equal to

exp�F̂ cos ��, where � is the angle between the direction
from a nearest neighbor to the central site and the field di-

rection, the field dependence of the mobility and the
recombination-rate functions are then given by

f iso�F̂� =
3

2
�

0



exp�F̂ cos ��sin � cos �d�

= 3
F̂ cosh�F̂� − sinh�F̂�

F̂3
�9a�

and

hiso�F̂� =
1

2
�

0



exp�F̂ cos ��sin �d� =
sinh�F̂�

F̂
. �9b�

The cos��� weight factor under the integral in Eq. �9a� takes
the angular dependence of the projected hop distance into
account. The field dependence of the mobility is smaller than
as given by Eq. �5�, as the projected hop distances are on
average smaller than �a. Therefore, the function f iso, given
by Eq. �9a�, is inconsistent with the 3D-ME data. We find
that it would be possible to solve this issue by an enhance-
ment of the lattice parameter by a factor �=1.27, making use
of the fact that in the field range studied in Fig. 3 to an

excellent approximation f iso��F̂�	 f�F̂�. Figure 3 shows the
hiso�F� / f iso�F� ratio which has been calculated including this
lattice parameter correction. We find that for the field range
considered hiso / f iso is well approximated by h2 / f �not
shown�.

The MC results given in Ref. 27 suggest that in the Boltz-
mann limit and for small fields, the recombination rate is
well described by the Langevin formula, independent of the
disorder parameter. Using the expressions for the hop rates
given by Eqs. �2� and �3� or Eqs. �B6�, depending on the
electric field, the recombination rate at each site �with a vol-
ume V=�a3� is then given by

rrec,i =
�e2

�akBT
ch,ice,i�gh�nh,i,�̂i�r0,i,h + ge�ne,i,�̂i�r0,i,e�hk�F̂i� .

�10�

In view of the uncertainty with respect to the temperature
dependence of the recombination rate, it is at present not yet
possible to give a final conclusion about the best method for
translating results from three-dimensional modeling to the
1D-ME model. In Sec. III, a comparison will be made be-
tween the recombination profiles obtained using k=4 �the
Langevin formula is then an excellent approximation up to
fields as high as 
108 V /m�, and as obtained using k=2.

Under conditions of near equilibrium the proper inclusion
of a charge-carrier generation term is important. In thermal
equilibrium there is no net emission, so the generation rate is
then precisely equal to the recombination rate. Near equilib-
rium occurs at very small voltages, and �at any voltage� close
to the metallic electrodes. As far as we know, this issue has
not yet been discussed in the literature for the case of disor-
dered organic semiconductors. We assume that the genera-
tion rate at each site �with a volume V=�a3� is given by an
expression analogous to Eq. �10�,

model 1 model 2 model 3model 1 model 2 model 3
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FIG. 3. �Color online� Ratio of the actual and Langevin recom-
bination rates for a system with a Gaussian DOS with �=0.1 eV
and a=0.8 nm. The full and dashed curves give the functions h0 / f ,
h4 / f , and hiso / f iso at 300 K and 250 K, respectively, corresponding
to recombination processes as shown schematically in the top part
of the figure. The closed circles �with a�0.3 uncertainty at the two
lowest fields� give averages of 250 K and 350 K results obtained in
Ref. 27 from MC calculations. These calculations revealed no sig-
nificant temperature dependence.
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rgen,i =
�e2

�akBT
ch,intr,ice,intr,i�gh�nh,intr,i�̂i�r0,i,h

+ ge�ne,intr,i,�̂i�r0,i,e�hk�F̂i� . �11�

Here ch,intr,i and ce,intr,i are the intrinsic hole and electron
concentrations on site i, respectively, which are obtained by
setting the quasi-Fermi levels for electrons and holes equal
under the constraint that the charge density is equal to the
value e�nh,i−ne,i� at the site considered. The �Ri−Gi� term in
Eq. �7� then properly vanishes at thermal equilibrium.

III. SINGLE-LAYER OLEDS

A. Symmetric OLEDs

We first study the effect of Gaussian disorder on the cur-
rent density and recombination profile in single-layer 100 nm
OLEDs, based on a semiconductor with equal widths of the
electron and hole DOS and with equal values of the mobility
at zero density and zero field. At the anode and cathode,
perfect alignment of the Fermi level with the centers of the
hole and electron Gaussian DOSs, respectively, is assumed.
In view of the equivalent roles of electrons and holes, we call
these devices “symmetric.” The energy gap between the
highest occupied molecular orbital �HOMO� and lowest un-
occupied molecular orbital �LUMO� states, defined as the
energy distance between the centers of the densities of states,
is taken equal to Eg=2 eV. The built-in voltage, Vbi, is there-
fore equal to 2 V. Figure 4 shows the J�V� characteristics for
single-carrier and double-carrier devices with �̂ equal to 3
and 6. All parameters used are included in the figure caption.

For single-carrier devices it was already shown in Ref. 34
�Fig. 9� that the diffusion contribution to the current density
below V=Vbi becomes more pronounced with increasing dis-
order. Figure 4 shows that this effect is even stronger for
double-carrier devices. The onset of the current density �and
of the light emission� occurs well below the built-in voltage.

The current density becomes ohmic �linear in V� at small
voltages, outside the range displayed in Fig. 4. The diffusion
current density can be reduced by the introduction of an in-
jection barrier, leading to a strong decrease in the current
density below Vbi. This may be seen from the dashed curves
in Fig. 4 for devices with �̂ and with a 0.2 eV injection
barrier at both interfaces �while keeping Vbi equal to 2 V�.
The resulting hole �electron� carrier concentration at the an-
ode �cathode� interface is then 0.016 carriers per site.

At voltages well above Vbi, where the diffusion contribu-
tion to the current density is only minor, the current density
in double-carrier devices with large disorder is still strongly
enhanced as compared to the single-carrier current density.
At 10 V, the enhancement is equal to a factor 
7.5 and 
3.8
for �̂ equal to 6 and 3, respectively, for the devices studied.
The enhancement is only slightly affected when the carrier
density at the injecting interfaces is reduced by more than
one order of magnitude �dashed curves in Fig. 4�. For �̂=3,
a similarly small effect of introducing a decreased carrier
concentration at the interface was found.

Within a drift-only device model which assumes Lange-
vin recombination, the enhancement factor is for symmetric
devices with ideal injecting contacts equal to 
2.88.5 The
double-carrier current is larger than twice the single-carrier
current due to the partial canceling of the electron and hole
space charge in the device. This may be understood in more
detail by focusing on the current density in the device center,
J=e�0ncFc �per charge carrier�, where nc and Fc are the
carrier density and the electric field in the device center. We
find that nc and Fc are enhanced as compared to their values
in otherwise equal single-carrier devices by an equal factor,
q=16 / �3�2��1.20, consistent with the total enhancement
2�q2=256 / �92��2.88.36 Use was made of an analysis
given in Ref. 36 for obtaining the position dependence of the
density and the field.

The same method is used for analyzing the enhancement
for devices with �̂=6, at 10 V. The drift contribution to the
current density in the device center is given by J
=e�0g�nc�f�Fc�ncFc �per charge carrier�, where the g and f
functions are the enhancement of the mobility with the den-
sity and the field, defined in Sec. II. For the double-carrier
device g�nc�, f�Fc�, nc, and Fc are found to be all approxi-
mately a factor 1.35 larger than for the single device, ex-
plaining a total enhancement factor 
6.6. The remaining dif-
ference with the actual factor of 
7.5 is due to the
contribution of the diffusion current density. The effect of
disorder on nc is due to a subtle interplay between various
effects, as may be seen for the case of single-carrier devices
from Fig. 4 in Ref. 34; disorder leads to a larger or smaller
value of nc, depending on the applied voltage.

The effect of Gaussian disorder on the recombination pro-
file is shown in Fig. 5, for V=3 and 10 V. The horizontal axis
gives the normalized distance to the anode, x /L, and the
vertical axis gives the normalized recombination rate, de-
fined such that the integral over the normalized device thick-
ness is equal to 1. For all cases shown, the recombination
efficiency, obtained from the ratio of the number of excitons
created per charge carrier, was found to be equal to 100
percent. The thick curves show the recombination rate for the
case of a constant mobility and diffusion coefficient. They

FIG. 4. J�V� curves for transport in symmetric double-carrier
�thick curves� and single-carrier �thin curves� devices without injec-
tion barriers �solid curves� and with a 0.2 eV injection barrier
�dashed, for �̂=6 only�, based on semiconductors with a Gaussian
DOS with equal electron and hole mobilities, with �0=1
�10−10 m2 / �Vs� and �̂=3 and 6. The other parameters used are:
L=100 nm, a=1 nm, Eg=eVbi=2 eV, �r=3 �relative dielectric
permittivity�, and T=298 K. The dashed line indicates the built-in
voltage.
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were obtained by carrying out 1D-ME calculations for a ten-
fold decreased intersite distance, thereby effectively switch-
ing off the field dependence of the mobility and recombina-
tion rate, and by taking g�n�=1. As discussed already in the
introduction, the recombination rate is then quite uniform
across the device, but decreases toward the electrodes in thin
interfacial zones, and vanishes at the electrodes. With in-
creasing voltage the thickness of these zones near the inter-
faces becomes smaller, as expected from the decrease in the
relative contribution of the diffusion current to the total cur-
rent with increasing voltage. The thin full and dashed curves
give the recombination rate for various values of �̂ as ob-
tained from Eq. �10� using the functions hk�F� with k=4 and
2, respectively.

The most striking result revealed by Fig. 5 is that, inde-
pendent of the values of the k parameter considered, disorder
leads to a strong confinement of the recombination profile to
the center of the device. The effect is due to the density
dependence of the mobility, as may be concluded from a
comparison of the effects at 3 V and 10 V. At 3 V, the field in
the device is quite modest, so that the density dependence of
the mobility is the predominant effect. The confinement ef-
fect is already observed for �̂=3, and increases further with
increasing disorder parameter. At 10 V a similar increase in
the degree of confinement is observed. The effect may be
understood as follows. In the device center, the electron and
hole carrier densities and mobilities are equal by symmetry.
However, at either side of the device center the carrier den-
sities, and therefore also the mobilities, are strongly unbal-
anced. The mobility of the electrons and holes which have
just passed the device center drops strongly, due to the
disorder-induced carrier density dependence of the mobility,

whereas the mobility of the other carrier increases. There-
fore, most carriers which have just passed the device center
will recombine quickly, well before arriving at the opposite
electrode. We find that the introduction of injection barriers,
leading to a reduction in the carrier concentration at the in-
jecting interfaces to a 1% level, has almost no effect on the
shape of the recombination profiles.

At 10 V and for the cases �̂=3 and 4 the recombination
rate shows a local minimum in the device center, when using
the function h4�F�. This may be explained by considering the
more important role played at high voltages by the field de-
pendence of the mobility. The field is largest �most positive�
in the device center. The carrier density in the device center
needed for obtaining a certain current density can then be
relatively small, as the mobility is field enhanced. In con-
trast, it is relatively large in the regions more close to the
electrodes where the field shows a sign change toward nega-
tive values in the regions close to the electrodes. The recom-
bination rate, which is proportional to the product of the
electron and hole densities, is then relatively large in these
regions more close to the electrodes, and smaller in the de-
vice center, as found already in Ref. 8 for the case of a
material showing a Poole-Frenkel-type field-dependent mo-
bility �but no carrier density dependence of the mobility�.
For higher disorder parameters the carrier density depen-
dence of the mobility becomes more predominant, so that the
recombination becomes more confined to the device center.

The stronger field dependence of the function h2 as com-
pared to h4 leads in all cases considered to an enhanced
recombination rate in the device center, where the field is
largest. At 3 V, the different field dependence of the recom-
bination rate as obtained when using the functions h4 or h2 is
not yet very important. However, at 10 V the difference is
much larger. It will thus be of practical interest to investigate
using 3D-MC calculations how precisely the field depen-
dence of the recombination rate should be described in sys-
tems with Gaussian disorder.

B. Asymmetric OLEDs

We have also studied the effects of Gaussian disorder in
“asymmetric” devices, by varying �0,e while �0,h remains
fixed. All other parameters are identical to those used above.
Figure 6 shows the effect of varying the �0,e /�0,h ratio on
the enhancement of the current density in such devices, with
�̂ equal to 3 and 6 and for V=10 V. The figure shows that
the current density in devices with large disorder ��̂=6� is
not only strongly enhanced with respect to the single-carrier
current density when �0,e /�0,h=1, but already for quite
small values of the electron mobility.

Figure 7 shows for such asymmetric OLEDs for various
values of the ratio �0,e /�0,h the normalized recombination
rate profile at V=10 V, for �̂ equal to 3 �Fig. 7�a�� and 6
�Fig. 7�b��. All other parameters used were the same as those
given in the caption of Fig. 4. As is well known, the peak in
the emission profile shifts to the cathode with decreasing
�0,e /�0,h. It may be seen that with increasing disorder this
asymmetry-induced shift becomes less pronounced, and that
for strongly asymmetric devices high disorder gives rise to a

FIG. 5. Position dependence of the normalized recombination
density in symmetric 100 nm OLEDs with a Gaussian electron and
hole density of states with various values of �̂ �thin curves�, for the
parameter values given in the caption of Fig. 7, and for the case of
a constant mobility �thick curves�, at 298 K and at �a� 3 V and �b�
10 V. The full and dashed thin curves have been obtained using Eq.
�10� with the functions h4 and h2, respectively.
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relatively large width of the profile. This may look some-
what paradoxical, as for symmetric devices high disorder
gives rise to a relatively small width. This may be under-
stood again by considering the effect of the density depen-
dence of the mobility. Even for devices for which �0,e
��0,h, the electron mobility is close to the cathode, where
the electron density is large, much larger than the hole mo-
bility. Locally, the mobility asymmetry is thus reversed. The
overall effect is a smaller effective asymmetry, resulting in a
wider recombination profile with a peak which is shifted
away from the cathode.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

In the first part of this paper a 1D-ME method has been
developed for calculating the J�V� curves and recombination
profiles in sandwich-type devices in which the electron and
hole DOS have a Gaussian shape. By the construction, in the
zero-field limit the carrier density dependence of the mobil-
ity is equal to the results obtained within the EGDM and the
recombination rate is consistent with the Langevin formula.
An expression is given for the electron-hole pair generation
rate.

The model may be used to provide a physically transpar-
ent interpretation of the numerical results obtained from 3D
modeling of the mobility and recombination rate. Three ex-
amples of such applications of the model were presented.
First, it was shown that the model predicts that the mobility
may be written as a product of separate carrier-density-
dependent and field-dependent factors, consistent with the
empirical finding of such a factorizability in Ref. 11. Second,
it was shown that the field dependence of the mobility as
obtained from 3D-ME calculations can be understood when
in our 1D model the intersite distance is taken to increase
slightly with the disorder parameter �̂, instead of being equal
to the actual average intersite distance. Physically, this re-
flects that the distance over which the mobility-determining
hops take place increases with increasing �̂, as expected
from percolation theory. Third, the model predicts that the
field dependence of the recombination rate is enhanced with
respect to the field dependence given by the Langevin for-
mula, in agreement with a result obtained from 3D-MC
calculations.27 A simple expression is provided for describing
this effect �Eq. �8��, containing a single parameter �k� which
describes the relative weights of longitudinal and lateral
hops.

In the second part of the paper, the method has been used
to investigate how disorder affects the current density and
recombination profile in single-layer OLEDs. A strong
disorder-induced enhancement of the full �double-carrier�
current density has been found as compared to the current
density obtained in single-carrier devices based on the same
material. Furthermore, in OLEDs with equal electron and
hole mobility functions, the shape of the recombination pro-
file becomes more narrow, i.e., more confined to the center
of the layer with increasing disorder. The effect is already
quite significant when �̂=6. In such a case, the light-
outcoupling efficiency can be significantly enhanced as com-
pared to the efficiency obtained in the case of a constant
mobility and diffusion coefficient, for which the recombina-
tion profile is quite uniform across the device. In contrast,
the recombination profile is found to become wider with in-
creasing disorder in asymmetric OLEDs, with unequal elec-
tron and hole mobilities so that the recombination profile is
located close to one of the electrodes. For voltages and layer
thicknesses that are of practical interest, taking the enhanced
field dependence of the recombination rate into account has
been shown to be important. It will therefore be of interest to
investigate the possible disorder, temperature, and charge-
carrier density dependence of this effect in more detail using
3D Monte Carlo calculations.

We envisage that an important future application of the
model would be the analysis of transport across organic-

FIG. 6. Ratio of the current density in asymmetric double-
carrier device and a single-carrier hole-only device, Jdc /Jsc, as a
function of the ratio of the zero-field and zero-density electron mo-
bilities for electrons and holes, �0,e /�0,h, for devices with a Gauss-
ian DOS with �̂=3 and 6 �full curves�, and for devices with a
constant mobility using the Parmenter-Ruppel drift-only model
�Ref. 5� �dashed curve�. Apart from �0,e, all other parameter values
are the same as used in Fig. 4.

FIG. 7. Position dependence of the normalized recombination
density in asymmetric 100 nm OLEDs for various values of
�0,e /�0,h, for devices with a Gaussian DOS with �a� �̂=3 and �b� 6,
at 10 V. Apart from �0,e, all other parameter values are the same as
used in Figs. 4 and 5 for studying symmetric devices.
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organic interfaces. Within the scope of our model, ideally
sharp interfaces are characterized by only two parameters,
viz., the energy difference � between the transport levels in
the two layers in the absence of a field, and the hopping
distance, d, between the two adjacent layers. In the simplest
case, with equal disorder parameters in both layers, � is
equal to the HOMO or LUMO energy difference. However,
even when the real average intersite distance at the interface
is equal to the value a in the bulk of the layers, d is then not
expected to be equal to the effective lattice parameter �a, as
the effective distance for “critical” �current density determin-
ing� hops across the interface is influenced by �. It would be
of interest to investigate using 3D modeling to what extent
such a description of the transport across interfaces indeed
holds, and how d depends on � and �. The model may then
be applied to realistic multilayer OLEDs developed for, e.g.,
high-efficiency lighting applications.

The model may also be extended to include trap states,
viz., by making use of the multiple-trap-and-release model.37

It is then assumed that there is local thermal equilibrium
between subpopulations of carriers residing in the Gaussian
DOS and in the trap DOS, and that the transport is only due
to the fraction of carriers residing in the Gaussian DOS. Giv-
ing a detailed discussion of this application is beyond the
scope of this paper. We have successfully used the model to
describe transport and recombination in single-layer blue-
emitting OLEDs based on polyfluorene-based copolymers
within which electron transport is influenced by traps.38,39
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APPENDIX A. TREATMENT OF CHARGE-CARRIER
DIFFUSION WITHIN THE 1D-ME MODEL

Within the 1D-ME model developed in this paper the ac-
tual 3D system with Gaussian disorder is replaced by an
effective 1D two-level system. Equations �1�–�4� describe
the current density response to a local field. A disorder-
parameter-dependent function g�n , �̂�, deduced in Ref. 11
from the 3D-ME calculations, is used to describe the carrier
density dependence of the mobility. In this appendix, we dis-
cuss to what extent the model appropriately describes
charge-carrier diffusion.

The diffusion current density, which arises in the absence
of an electric field as a result of the presence of a carrier
density gradient, is within the 1D-ME model given by

Jdif f = −
e

a2

d�cg�n��
dx

�ar0 = − �0kBT
d�cg�n��

dx
, �A1�

using c=�a3n, Eqs. �1� and �4�. From Eq. �1� and the defini-
tion of the diffusion coefficient, D�Jdif f / �−e�dn /dx��, it fol-

lows that D is density dependent, as given by

D�n� =
�0kBT

e

d�ng�n��
dx

dn

dx

=
g�n��0kBT

e
�1 +

n

g

dg

dn
� .

�A2�

This expression may be compared with the generalized Ein-
stein equation �GEE� for the diffusion coefficient, D /��n�
=n / �e�dn /dEF��, which follows from the requirement that in
equilibrium the drift and diffusion currents between each pair
of states are opposite �zero net current�. This yields the fol-
lowing relation between the carrier density and the Fermi
energy:

dEF

dn
= kBT1

n
+

1

g�n�
dg�n�

dn
� . �A3�

It may be concluded that the 1D-ME model appropriately
describes diffusion, including the enhancement of the diffu-
sion coefficient as described by the GEE, if the DOS is taken
to have a form which is consistent with Eq. �A3�. In Fig. 8,
an example is given. The full and dashed curves show the
integrated carrier concentration as a function of the Fermi
energy, as obtained using Eq. �A3� and as expected for a
perfectly Gaussian DOS, respectively. For completeness, we
give the mobility enhancement function used

g�n,�̂� = exp1

2
��̂2 − �̂��2n

Nt
��� for n � 0.1 � Nt ,

�A4�

with �=2�ln��̂2− �̂�−ln�ln 4�� / �̂2. As motivated in Ref. 34,
we take g�n , �̂�=g�0.1�Nt , �̂� for n
0.1�Nt. The precise
value of the cut-off density has no significant effect on the
results presented in this paper. The figure shows that the two
integrated carrier densities are quite close but not precisely
equal. The effective DOS would be exactly Gaussian when

FIG. 8. Carrier concentration as a function of the Fermi energy,
for a case with �̂=4 �with �=0.1 eV and T=290 K�, as used ef-
fectively in the 1D-ME model �full curve, Eq. �A2�� and as obtained
for a Gaussian DOS �dashed curve�.
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the mobility would be well described assuming a fixed trans-
port level, and neglecting the effect of the final-state occupa-
tion probability on the hopping rates. The mobility enhance-
ment function would then be given by g�c�
=exp�EF,Gauss�c� / �kBT�+ �̂2 /2� /c �see Ref. 30, Eq. �28��.

In principle, the proper effective EF�n� relationship de-
rived above should be used when determining the carrier
density boundary conditions corresponding to a certain injec-
tion barrier �see Sec. II A�. We find that, in practice, this only
has a significant effect on the current density when the volt-
age is small, so that the transport is predominantly due to
charge-carrier diffusion.

APPENDIX B. REFINEMENT OF THE
MODEL—HOPPING RATES AND RECOMBINATION

AT HIGH ELECTRIC FIELDS

Figure 2 reveals that at high electric fields the field depen-
dence of the mobility is not described well by Eq. �5�. Due to
the large field, the energy of most downstream nearest-
neighbor states is lower than the energy of the initial state, so
that the mobility-determining hops are no longer thermally
activated.11 In this subsection we will refine the 1D-ME
model in such a way that for fields larger than a certain
crossover field, F�, the mobility is given by the exact expres-
sion for the mobility in the high-field limit, i.e.,

�1D�c,F,�̂� =
C1�0a

F
=

�

eaF
� �� for F 
 F�.

�B1�

The first step in Eq. �B1� follows by writing the mobility as
the ratio of the average velocity and the field, and the second
step follows using the definition of �� given in Sec. II A.

Within the 1D-ME model, we interpret F� as the field at
which the effective thermal activation energy for forward
hops becomes negative. In Fig. 9�a�, the energy level struc-
ture at F=F� is shown. The effective activation energy for
forward hops is equal to the local activation energy, EA�n�
�Etr−E0�n�, minus a term e�aF /2 �as shown in Fig. 1�b��,
so that

F� = 2
EA�ni�

e�a
. �B2�

On the other hand, it follows straightforwardly from the re-
quirement of continuity of the mobility at F=F� that

F� 	 �C2�̂2 + ln���̂� − ln g�n,�̂�� �
2kBT

e�a
, �B3�

using that to an excellent approximation f�F̂��
�exp�F̂�� / �2F̂��. EA is thus given by

EA�n� 	 �C2�̂2 + ln���̂� − ln g�n,�̂�� � kBT . �B4�

In order to avoid unnecessary notational complexity, the de-
pendence of EA on T, � and the site density Nt=a−3 have not
been indicated. As EA�n� decreases with increasing carrier
density, F� is predicted to decrease with increasing carrier

density. Figure 2 shows that the �̂ and carrier density depen-
dence of the field at which the regime change takes place is
quite well predicted by the 1D-ME model. In view of the
simplicity of the 1D model, it is not surprising that the pre-
dicted effect of the regime change on the mobility is more
abrupt than in the full 3D model.

We now consider a device with a nonuniform carrier den-
sity and field, and focus on transport across an interval i. For
fields Fi
Fi

� �see Fig. 9�b�� we assume that the rate of
downhill hops is independent of the final-state energy and
equal to the rate at F=F�. The effective activation energy is
thus assumed to be determined by the position of the thick
dashed energy level indicated in Fig. 9�b� in between sites
i−1 and i. This is consistent with the assumption made
within the framework of the Millar-Abrahams theory con-
cerning the dependence of the hopping probability on the
difference between the initial and final state energies.40 The
forward hopping rate is then given by

ri
+ = r0,i−1 exp�EA,i−1�0�

kBT
� if Fi 
 Fi

�. �B5�

By construction, this expression yields the high-field mobil-
ity given by Eq. �B1�. Assuming that also for the backward
hops the effective activation energy is determined by the
dashed energy level in Fig. 9�b�, the backward hopping rate
is given by

site i-1

Etr

E0

eζaF*/2e
n
e
rg
y

site i-1

Etr

E0

eζaF*/2

site i

Etr

E0

site i

Etr

E0

(a) F = F* (b) F > F*

FIG. 9. �Color online� Schematic view of the hopping process at
�a� F=F�, for the special case in which the carrier concentration is
the same at both sites and �b� F
F�, for the general case of differ-
ent carrier concentrations at both sites. At each site the effective
initial state level E0 and the transport level Etr are shown. The field
in interval i is proportional to the slope of the thin dashed line. The
thick horizontal dashed line in between both sites indicates the ef-
fective thermal activation level. In both cases, only hops from site i
to site i−1 are thermally activated.
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ri
− = r0,i exp�− e�aFi + EA,i−1�ni−1� − EA,i�ni� + EA,i�0�

kBT
� if Fi 
 Fi

�. �B6�

In devices with a homogeneous large field, the backward
hopping rate is negligible. However, in inhomogeneous sys-
tems, in particular at internal �organic-organic� interfaces,
Eq. �B6� is relevant.

In a field F
F�, the field dependence of the recombina-
tion rate is different from the functions hk given by Eq. �8�.
The effect of backward and lateral hops can then be ne-
glected, and the average velocity of the carriers is indepen-
dent of the field. Therefore, also the recombination rate is

then independent of the field: hk�F��exp�F̂�� / �2+k�. As
now f�F���1 /2�exp�F̂�� / F̂, one finds that hk�F� / f�F�
��2 / �2+k��F̂. It may be easily verified that the same linear
dependence on F is also obtained when extrapolating the h / f
ratio for fields below F�. For the case considered in Fig. 6,
F��4�108 V /m at 300 K, i.e., outside the field range
given in Fig. 6. However, it is evident from the figure that the
linear dependence of h / f on F sets in at fields already well
below F�.
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